Latent Class Analysis for Driving Behavior on Merging Section
نویسندگان
چکیده
منابع مشابه
An application of Measurement error evaluation using latent class analysis
Latent class analysis (LCA) is a method of evaluating non sampling errors, especially measurement error in categorical data. Biemer (2011) introduced four latent class modeling approaches: probability model parameterization, log linear model, modified path model, and graphical model using path diagrams. These models are interchangeable. Latent class probability models express l...
متن کاملLearning of Latent Class Models by Splitting and Merging Components
A problem in learning latent class models (also known as naive Bayes models with a hidden class variable) is that local maximum parameters are often found. This leads not only to suboptimal parameters, but also to a wrong number of classes (components) for a hidden variable. The standard solution of having many random starting points for the EM algorithm is often too expensive computationally. ...
متن کاملDynamic Latent Class Analysis
ISSN: 1070-5511 (Print) 1532-8007 (Online) Journal homepage: http://www.tandfonline.com/loi/hsem20 Dynamic Latent Class Analysis Tihomir Asparouhov, Ellen L. Hamaker & Bengt Muthén To cite this article: Tihomir Asparouhov, Ellen L. Hamaker & Bengt Muthén (2017) Dynamic Latent Class Analysis, Structural Equation Modeling: A Multidisciplinary Journal, 24:2, 257-269, DOI: 10.1080/10705511.2016.125...
متن کاملLatent Class Analysis
The basic idea underlying latent class (LC) analysis is a very simple one: some of the parameters of a postulated statistical model differ across unobserved subgroups. These subgroups form the categories of a categorical latent variable (see entry latent variable). This basic idea has several seemingly unrelated applications, the most important of which are clustering, scaling, density estimati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transportation Research Procedia
سال: 2015
ISSN: 2352-1465
DOI: 10.1016/j.trpro.2015.03.020